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Abstract

We present a novel method for recovering the 3D struc-
ture and scene flow from calibrated multi-view sequences.
We propose a 3D point cloud parametrization of the 3D
structure and scene flow that allows us to directly estimate
the desired unknowns. A unified global energy functional
is proposed to incorporate the information from the avail-
able sequences and simultaneously recover both depth and
scene flow. The functional enforces multi-view geometric
consistency and imposes brightness constancy and piece-
wise smoothness assumptions directly on the 3D unknowns.
It inherently handles the challenges of discontinuities, oc-
clusions, and large displacements. The main contribution
of this work is the fusion of a 3D representation and an ad-
vanced variational framework that directly uses the avail-
able multi-view information. The minimization of the func-
tional is successfully obtained despite the non-convex opti-
mization problem. The proposed method was tested on real
and synthetic data.

1. Introduction
The structure and motion of objects in a 3D space is an

important characteristic of dynamic scenes. Reliable 3D
motion maps can be utilized in many applications, such as
surveillance, motion analysis, tracking, navigation, or vir-
tual reality. In the last decade, an emerging field of re-
search has addressed the problem of scene flow computa-
tion. Scene flow is defined as a dense 3D motion field of a
non-rigid 3D scene (Vedula et al. [17]). It follows directly
from this definition that 3D recovery of the surface must be
an essential part of scene flow algorithms, unless it is given
a priori.

Our objective is to simultaneously compute the 3D struc-
ture and scene flow from a multi-camera system. The sys-
tem consists of N calibrated and synchronized cameras with
overlapping fields of view. A unified variational framework
is proposed to incorporate the information from the avail-
able sequences and simultaneously recover both depth and

scene flow. To describe our method, we next elaborate on
the parametrization of the problem, the integration of the
spatial and temporal information from the set of sequences,
and the variational method used.

Most existing methods for scene flow and surface esti-
mation parameterize the problem in 2D rather than 3D. That
is, they compute the projection of the desired 3D unknowns,
namely disparity and optical flow (e.g., [22, 23, 18, 8, 10,
7, 20, 9]). Using 3D parametrization allows us to impose
primary assumptions on the unknowns prior to their projec-
tion. For example, a constant 3D motion field of a scene
may project to a discontinuous 2D field. Hence, in this ex-
ample, smoothness assumptions hold for 3D parametriza-
tion but not for 2D one. We propose a 3D point cloud
parametrization of the 3D structure and 3D motion. That
is, for each pixel in a reference view, a depth value and a
3D motion vector are computed. Our 3D parametrization
allows direct extension to multiple views, without changing
the problem’s dimension.

Decoupling the spatio-temporal information leads to se-
quential estimation of scene flow and structure (e.g., [17,
18, 22, 23, 3, 12, 20]). Such methods rely on pre-computed
motion or structure results and do not utilize the full spatio-
temporal information. For example, Vedula et al. [18] sug-
gested independent computation of the optical flow field
for each camera without imposing consistency between the
flow fields. Wedel et al.[20] enforced consistency on the
stereo and motion solutions. However, the disparity map is
separately computed, and thus the results are still sensitive
to its errors. To overcome these limitations, simultaneous
recovery of the scene flow and structure was suggested (e.g.,
[19, 8, 10, 7, 11]). However, most of these methods suffer
from the restriction of using 2D parametrization; in particu-
lar, they are limited to two views (3D ones are discussed in
Sec. 1.1). Our method involves multi-view information that
improves stability and reduces ambiguities.

We suggest coupling the spatio-temporal information
from a set of sequences using 3D parameterization for solv-
ing the problem. To do so, a global energy functional is de-
fined to incorporate the multi-view geometry with a bright-

1



ness constancy (BC) assumption (data term). Regulariza-
tion is imposed by assuming piecewise smoothness directly
on the 3D motion and depth. We avoid the linearization of
the data term constraints to allow large displacements be-
tween frames. Moreover, discontinuities in both 3D mo-
tion and depth are preserved by using non-quadratic cost
functions. This approach is motivated by the state-of-the-
art optical flow variational approach of Brox et al. [2]. Our
method is the first to extend it to multiple views and 3D
parametrization. The minimization of the resulting non-
convex functional is obtained by solving the associated
Euler-Lagrange equations. We follow a multi-resolution ap-
proach coupled with an image-warping strategy.

We tested our method on challenging real and synthetic
data. When ground truth is available, we suggest a new
evaluation based on the 3D errors. We argue that the con-
ventional 2D error used for evaluating stereo and optical
flow algorithms does not necessarily correlate with the sug-
gested 3D error. In particular, we claim that the ranking of
stereo algorithms (e.g., [15]) may vary when the 3D errors
are considered.

The main contribution of this paper is the combination
of a novel 3D formulation and an accurate global energy
functional that explicitly describes the desired assumptions
on the 3D structure and scene flow. The functional inher-
ently handles the challenges of discontinuities, occlusions,
and large displacements. Combining our 3D representation
in that variational framework leads to a better constraint
problem that directly utilizes the information from multi-
view sequences. We manage to successfully minimize the
functional despite the challenging non-convex optimization
problem.

The rest of the paper is organized as follows. We begin
with reviewing related studies in Sec. 1.1. Sec. 2 describes
our method. Sec. 3 provides an insight to our quantitative
3D evaluation measures. In Sec. 4 we present the experi-
mental results. We discuss our conclusions in Sec. 5.

1.1. Related work

To the best of our knowledge, our view-centered 3D
point cloud representation has not been previously consid-
ered for the scene flow recovery problem. Other 3D param-
eterizations, that are not view dependent, were studied: 3D
array of voxels [17], various mesh representations [6, 4, 11]
and dynamic surfels [3]. In contrast to our method, each
of these 3D representations can provide a complete, view-
independent 3D description of the scene. However, using
these methods, the type of scene that can be considered is
often limited by the representation (e.g., a single moving
object) and a large number of cameras is required in order
to benefit from their choice of parametrization. In addition,
the discretization of the 3D space is often independent of
the actual 2D resolution of the available information from

the images.
The studies most closely related to ours in the sense of

numeric similarity are [7, 20]. Huguet & Devernay [7] pro-
posed to simultaneously compute the optical flow field and
two disparity maps (in successive time steps), while Wedel
et al. [20] decoupled the disparity at the first time step
from the rest of the computation. Both extend the varia-
tional framework of Brox et al. [2] for solving for scene
flow and structure estimation. In these studies regulariza-
tion is imposed on the disparity and optical flow (2D for-
mulation), while our assumptions refer directly to the 3D
unknowns. In addition, their methods were not extended to
multiple views.

A multi-view energy minimization framework was pre-
sented by Zhang & Kambhamettu [22]. A hierarchical rule-
based stereo algorithm was used for initialization. Their
method imposed optical flow and stereo constraints while
preserving discontinuities using image segmentation infor-
mation. In their method, each view results in an additional
set of unknowns, and the setup is restricted to a parallel
camera array. Another multi-view method was suggested
by Pons et al. [12]. They use a 3D variational formula-
tion in which the prediction error of the shape and motion
is minimized by using a level-set framework. However, the
shape and motion are sequentially computed.

There are only few multi-view methods that use 3D rep-
resentations and simultaneously solve the 3D surface and
motion. Neumann & Aloimonos [11] modeled the object
by a time-varying subdivision hierarchy of triangle meshes,
optimizing the position of its control points. However, their
method was applied only to scenes which consist of one
connected object. Furukawa & Ponce [6] constructed an
initial polyhedral mesh at the first frame. It is tracked as-
suming locally rigid motion and successively, globally non-
rigid deformation. Courchay et al. [4] represented the 3D
shape as an animated mesh. The shape and motion are re-
covered by optimizing the positions of its vertices under the
assumption of photo-consistency and smoothness of both
the surface and 3D motion. Nevertheless, both methods
Courchay et al. [4] and Furukawa & Ponce [6] are limited
due to the fixed mesh topology.

2. The Method

Our goal is to simultaneously reconstruct the 3D sur-
face of a 3D scene and its scene flow (3D motion) from N
static cameras. The cameras are assumed to be cali-
brated and synchronized, each providing a sequence of the
scene. We assume brightness constancy (BC) in both spatial
(different viewpoints) and temporal (3D motion) domains.
We formulate an energy functional which we minimize in
a variational framework by solving the associated Euler-
Lagrange equations.
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2.1. System Parameters and Notations

Consider a set of N calibrated and synchronized cam-
eras, {Ci}N−1

i=0 . Let, Ii, be the sequence taken by camera
Ci. Let M i be the 3 × 4 projection matrix of camera Ci.
The projection of a 3D surface point P = (X,Y, Z)T onto
an image of the ith sequence at time t is given by:

pi =
(
xi

yi

)
=

[M i]1,2[P 1]T

[M i]3[P 1]T
, (1)

where [M i]1,2 is the 2 × 4 matrix which contains the first
two rows of M i and [M i]3 is the third row of M i.

Let V = (u, v, w)T be the 3D displacement vector of the
3D point P (in our notation bold characters represent vec-
tors). The new location of a point P after the displacement
V is denoted by P̂ = P+V. Its projection onto the ith image
at time t+ 1 is denoted by p̂i (see Fig. 1).

Assume without loss of generality that the 3D points are
given in the reference camera, C0, coordinate system. In
this case, the X and Y coordinates are functions of Z and
are given by the back projection:(

X
Y

)
= Z

(
x/sx

y/sy

)
− Z

(
ox/sx

oy/sy

)
, (2)

where sx and sy are the scaled focal lengths, (ox, oy) is the
principal point, and (x, y)T are the reference image coor-
dinates. We directly parameterize the 3D surface and scene
flow with respect to (x, y) and t (similar parametrization for
stereo was used by Robert & Deriche.[13]). That is,

P(x, y, t) = (X(x, y, t), Y (x, y, t), Z(x, y, t))T
, (3)

V(x, y, t) = (u(x, y, t), v(x, y, t), w(x, y, t))T
. (4)

Note that P(x, y, t + 1) is the 3D surface point which is
projected to pixel p = (x, y)T at time t + 1. Obviously, it
is different from P̂(x, y, t), which is projected to a different
image pixel p̂ = (x̂, ŷ)T (unless there is no motion).

For each image point in the reference camera, (x, y), and
a single time step, there are six unknowns: three for P and
three for V. However, since X and Y can be determined
by Eq. 2 as functions of Z and (x, y), there are only four
unknowns for each image pixel. We aim to recover Z and
V as functions of (x, y), using the N sequences.

In this representation, the number of unknowns is inde-
pendent of the number of cameras. Hence, a multi-view
system can be efficiently used without changing the dimen-
sions of the problem. This is in contrast to previous meth-
ods that use 2D parametrization, e.g., [7, 20, 9], where ad-
ditional cameras require additional sets of unknowns (e.g.,
optical flow or disparity field). Moreover, our representa-
tion does not require image rectification.

Figure 1. The point P is projected to pixels p0 and p1 on cameras
C0 and C1, respectively. The new 3D location at t+ 1 is given by
P̂ = P + V and it is projected to p̂0 and p̂1.

2.2. The Energy Functional

The total energy functional we aim to minimize is a sum
of two terms:

E(Z,V) = Edata + αEsmooth. (5)

The data term Edata expresses the fidelity of the result
to the model. Recovering the surface and scene flow by
the minimization of Edata alone is an ill-posed problem.
Hence, regularization is used, mainly to deal with ambigui-
ties (low texture regions) and image noise. In addition, the
regularization is used to obtain solutions for occluded pix-
els (see Sec. 2.4). The relative impact of each of the terms
is controlled by the regularization parameter α > 0. Next,
we elaborate on each of these terms.

Data assumptions: The data term imposes the BC assump-
tion in both spatial and temporal domains. That is, the inten-
sity of a 3D point’s projection onto different images before
and after the 3D displacement does not change. Addition-
ally, our 3D parametrization forces the solution to be con-
sistent with the 3D geometry of the scene and the camera
parameters. In particular, the epipolar constraints are satis-
fied.

The BC assumption is generalized for allN cameras and
for both time steps. The data term is obtained by integrat-
ing the sum of three penalizers over the reference image
domain. BCm penalizes deviation from the BC assumption
before and after 3D displacement; BCs1 and BCs2 penal-
ize deviation from the BC assumption between the refer-
ence image and each of the other views at time t and t+ 1,
respectively. Formally the penalizers for each pixel are de-
fined by:

BCm(Z,V) =

N−1∑
i=0

cimΨ(|Ii(pi, t)− Ii(p̂i, t+ 1)|2),

BCs1(Z) =

N−1∑
i=1

cis1Ψ(|I0(p0, t)− Ii(pi, t)|
2), (6)

BCs2(Z,V) =

N−1∑
i=1

cis2Ψ(|I0(p̂0, t+ 1)− Ii(p̂i, t+ 1)|2),
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where ci∗ is a binary function that omits occluded pixels
from the computation (see Sec. 2.4) and Ψ(s2) is a chosen
cost function. We use a non-quadratic robust cost function
Ψ(s2) =

√
s2 + ε2, (ε = 0.0001), which is a smooth ap-

proximation of L1 (see [2]), for reducing the influence of
outliers on the functional. The outliers are pixels that do
not comply with the model due to noise, lighting changes,
or occlusions. In this formulation, no linear approximations
are made; hence large displacements between frames are al-
lowed. Note that we chose not to impose an additional gra-
dient constancy assumption. Previous studies for estimat-
ing optical flow (e.g., [2]) or scene flow (e.g.,[7]) imposed
this assumption for improved robustness against illumina-
tion changes. Nevertheless, since the gradient is viewpoint
dependent, this assumption does not hold in the spatial do-
main.

Smoothness assumptions: Piecewise smoothness assump-
tions are imposed on both the 3D motion field and surface.
Deviations from this model are usually penalized by using
a total variation regularizer, which is generally the L1 norm
of the field derivatives. Here we use the same robust func-
tion Ψ(s2) for preserving discontinuities in both the scene
flow and depth. Using the notation, ∇ = (∂x, ∂y)T , this
can be expressed as:

Sm(V) = Ψ(|∇u(x, y, t)|2 + |∇v(x, y, t)|2 + |∇w(x, y, t)|2),

Ss(Z) = Ψ(|∇Z(x, y, t)|2), (7)

where Sm is the penalizer of deviation from the motion
smoothness assumption and Ss is the penalizer for shape.
Note that the first order regularizer gives priority to fronto-
parallel solutions. In future work we intend to explore a
general smoothness constraint that is unbiased to a partic-
ular direction. For example, a second order smoothness
prior [21] might be more suitable in our framework.

The total energy function is obtained by integrating the
penalty (Eq. 6-7) over all pixels in the reference camera, Ω:

E(Z,V) =
∫

Ω

[BCm +BCs︸ ︷︷ ︸
data

+α (Sm + µSs)︸ ︷︷ ︸
smooth

]dxdy, (8)

where BCs = BCs1 + BCs2 , and µ > 0 is a parameter
used to balance the motion and the surface smoothness.

2.3. Optimization

We wish to find the functions Z,V that minimize our
functional (Eq. 8) by means of calculus of variations. Cal-
culus of variations supplies a necessary condition to achieve
a minimum of a given functional, which is essentially the
vanishing of its first variation. This leads to a set of partial
differential equations (PDEs) called Euler-Lagrange equa-
tions. In our case the associated Euler-Lagrange equations
can generally be written as

(
∂E
∂Z ,

∂E
∂u ,

∂E
∂v ,

∂E
∂w

)T
= 0.

2.3.1 Euler-Lagrange Equations

Consider the points P, P̂, their sets of projected points
{pi}

N−1
i=0 , {p̂i}

N−1
i=0 , and the sequences {Ii}N−1

i=0 . We use the
following abbreviations for the difference in intensities be-
tween corresponding pixels in time and space:

∆i = Ii(pi, t)− I0(p0, t),

∆̂i = Ii(p̂i, t+ 1)− I0(p̂0, t+ 1),

∆t
i = Ii(p̂i, t+ 1)− Ii(pi, t).

We use subscripts to denote the image derivatives. Using
the aforementioned notations, the non-vanishing terms of
the equations with respect to Z and u result in:

N−1∑
i=0

Ψ′((∆t
i)

2)∆t
i · (∆t

i)Z +

N∑
i=1

Ψ′((∆i)
2)∆i · (∆i)Z +

N−1∑
i=1

Ψ′((∆̂i)
2)∆̂i · (∆̂i)Z − αµ · div(Ψ′(|∇Z|2)∇Z) = 0,

(9)
N−1∑
i=0

Ψ′((∆t
i)

2)∆t
i · (∆t

i)u +

N∑
i=1

Ψ′((∆̂i)
2)∆̂i · (∆̂i)u

− α · div(Ψ′(|∇u|2 + |∇v|2 + |∇w|2)∇u) = 0.

(10)

with the Neumann boundary condition: ∂nZ = ∂nu =
∂nv = ∂nw = 0, where n is the normal to the image bound-
ary. The Euler-Lagrange equations with respect to v and w
are similar to Eq. 10 due to the symmetry of these variables.

Observe that the first variation of the functional with re-
spect to Z involves computing the derivatives of all images
(none of them vanish). This enforces the desired synergy of
the data from all sequences.

Due to space limitations, the detailed expressions for the
Euler-Lagrange equations are not represented. However, it
is clear from Eq. 9 or Eq. 10 that the images are non-linear
functions of the 3D unknowns due to perspective projec-
tion. As a result, the computation of image derivatives with
respect to Z and V requires using the chain rule, often in
a non-trivial manner. We refer the reader to our technical
report [1] for the detailed description.

2.3.2 Numerics

Our parametrization and functional represent precisely the
desired model (no approximations are made), resulting in
a challenging minimization problem. In particular, the use
of non-linearized data terms and non-quadratic penalizers
yields a non-linear system in the four unknowns Z and V
(e.g., Eq. 9-10). Moreover, one has to deal with the prob-
lem of multiple local minima as a result of the non-convex
functional. In our method, the derivation and discretiza-
tion of the equations results in additional complexity since
the perspective projection is non-linear in the unknowns Z
and V.
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a b c
Figure 2. (a) Illustration of the rotation axes. The sphere is rotating
around the green axis and the plane around the red one. (b) With
texture. (c) The reference view before rotation.

We cope with these difficulties by using a multi-
resolution warping method coupled with two nested fixed
point iterations as previously suggested by [2]. The multi-
resolution approach is employed by downsampling each in-
put image to an image pyramid with a scale factor η. The
original projection matrices are modified to suit each level
by scaling the intrinsic parameters of the cameras. Start-
ing from the coarsest level, the solution is computed at each
level and then utilized to initiate the lower (finer) level. This
justifies the assumption of small changes in the solution be-
tween consecutive levels. Thus, the equations can be par-
tially linearized at each level by Taylor expansion. Fur-
thermore, the effect of “smoothing” the functional in the
“coarse to fine” approach increases the chance of converg-
ing to the global minimum. We wish to avoid oversmooth-
ing at the low resolution levels by keeping the relative im-
pact of the smoothness term the same in all levels. This is
obtained by scaling the smoothness term α` = α · η` w.r.t
the pyramid level, `.

The solution in a given pyramid level is obtained from
two nested fixed point iterations that are responsible to re-
move the nonlinearity in the equations. The outer iteration
accounts for the linearizion of the data term. Using the first
order Taylor expansion, at each outer iteration, k, small in-
crements in the solutions, dZk and dVk are estimated. Next,
the total solution is updated using Zk+1 = Zk + dZk and
Vk+1 = Vk + dVk, the images are re-warped accordingly
and the images derivatives are re-computed. The inner loop
is responsible for removing the nonlinearity that resulted
from the use of the function Ψ. At each inner iteration a
final linear system of equations is obtained by keeping Ψ

′

expressions fixed. The final linear system is solved by ap-
plying the successive overrelaxation (SOR) method. We
refer to [1] for additional details on the numeric approach
presented in this section.

2.4. Occlusions

Occlusions are computed by determining the visibility
of each 3D surface point in each of the cameras at each
time step. Clearly, 3D points that are occluded in a spe-

cific image do not satisfy the BC assumption. Hence, the
associated component of the data term should be omitted.
This is accomplished by computing for each view (other
than the reference) three occlusion maps (ci∗). Each of the
three maps corresponds to the relevant penalizer in the data
term (Eq. 6). The computed maps are used as 2D binary
functions, multiplying respectively each of the data term
components. A modified Z-buffering is used for estimat-
ing the occlusion maps. The maps are updated at each outer
iteration in order to include the increments of the unknowns
in the computation.

3. A Note on Error Evaluation
Conventionally, evaluations of stereo, optical flow, and

scene flow algorithms are performed in the image plane.
That is, the computed error is the deviation of the projection
of the erroneous values in 3D from their 2D ground truth
(the disparity or the optical flow). We suggest a new evalua-
tion by assessing the direct error in the recovered 3D surface
and the 3D motion map. That is, we compute the deviation
of the estimated 3D point, P(x, y), from its ground truth,
Po(x, y). Various statistics over these errors can be chosen.
We compute the normalized root mean square (NRMS) er-
ror, which is the percentage of the RMS error from the range
of the observed values. We define NRMSP by:

NRMSP =

√
1
N

∑
Ω
||P(x,y)T−Po(x,y)T ||2

max(||Po(x,y)||)−min(||Po(x,y)||) ,
(11)

where Ω denotes the integration domain (e.g., non-occluded
areas) and N is the number of pixels. Similarly, NRMSV
error is computed for the 3D motion vector V. In addition,
the scene flow angular error is evaluated by computing the
absolute angular error (AAE), for the vector V.

The proposed evaluation is motivated by the observation
that the errors in 2D (in the image plane) do not necessar-
ily correlate with the errors in 3D. That is, the 2D error at
a given pixel depends not only on the magnitude of the 3D
error but also on the position of the 3D point relative to the
camera and on the 3D error direction . Thus, when com-
paring the results of 3D reconstruction or scene flow algo-
rithms, using the 3D evaluation may result in different rank-
ing than when using 2D errors. To test this observation, we
compared the results of various statistics computed using
2D and 3D errors on the top five ranked stereo algorithms
in Middlebury datasets [14]. The results demonstrate that
changes in the ranking indeed occur when RMS is consid-
ered.

4. Experimental Results
To assess the quality and accuracy of our method, we

preformed experiments on synthetic and real data. Our al-
gorithm was implemented in C using the OpenCV library.
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Like all variational methods, our method requires initial
depth and 3D motion maps. In all experiments the 3D mo-
tion field was simply initiated to zero. In the first two ex-
periments we used the stereo algorithm proposed in [5] to
obtain an initial depth map between the reference camera
and one of the other views. In the third experiment, we
used a naive initialization of two parallel planes. This ini-
tialization is very far from the real depth. We next elaborate
on each of the experiments.

Egomotion using stereo datasets: This experiment con-
sists of a real 3D rigid translating scene viewed by two,
three and four cameras. This scenario can also be regarded
as a static scene viewed by a translating camera array where
our method computes egomotion of the cameras. The Mid-
dlebury stereo datasets, Cones, Teddy and V enus [16],
were used for generating the data (as in [7]). Each of the
datasets consists of 9 rectified images taken from equally
spaced viewpoints. The images were considered as taken
by four cameras at two time steps. Due to the camera setup,
both the 2D and the 3D motion are purely horizontal. Still,
while the 3D motion is constant over the entire scene, the
2D motion is generally different for each pixel. We do not
make use of this knowledge when testing our algorithm.

For comparison with the results of the scene flow algo-
rithm proposed by Huguet et al.[7], we project our results
for V and Z onto the images. To evaluate the results, we
compute the absolute angular error (AAE) for the optical
flow and the normalized root mean square error (NRMS) for
the optical flow and each of the disparity fields at time t and
t+ 1. These measurements are given in Table. 1.

We achieved significantly better results for the optical
flow and disparity at time t + 1. There is an improve-
ment of 46%-54% in the NRMS error of the optical flow
and 28%-58% in the NRMS error of the disparity t+1. Fur-

NRMS (%) AAE
O.F. disp. at t disp. at t+ 1 (deg)

4 Views 1.32 6.22 6.23 0.12
Cones 2 Views 3.07 6.52 6.55 0.39

[7] 5.79 5.55 13.79 0.69
4 Views 2.53 6.13 6.15 0.22

Teddy 2 Views 2.85 7.04 7.11 1.01
[7] 6.21 5.64 17.22 0.51

4 Views 1.55 5.39 5.39 1.09
Venus 2 Views 1.98 6.36 6.36 1.58

[7] 3.70 5.79 8.84 0.98

Table 1. The evaluated errors (w.r.t the ground truth) of the projec-
tion of our scene flow and structure compared with the 2D results
of Huguet et al.[7]. Normalized RMS (NRMS) error in the opti-
cal flow (O.F.), disparity at time t, and the disparity at time t+ 1.
Also shown, the absolute angular error (AAE) corresponding to
the optical flow.

Z u v w
Figure 3. The top figure represents, from left to right, the ground
truth for the depth Z and the 3D motion u, v and w. The bottom
figure shows these results computed by our method.

thermore, the advantage of using more than two views is
demonstrated. As expected, the use of more than two views
leads to better results for all the unknowns.

Synthetic data: We tested our method on a challenging
synthetic scene viewed by five calibrated cameras. This se-
quence was generated in OpenGL and consists of a rotat-
ing sphere placed in front of a rotating plane. The plane is
placed at Z = 700 (the units are arbitrary) and the cen-
ter of the sphere at Z = 500 with radius of 200. Both
plane and sphere are rotated, each around different 3D axes
with different angles (see Fig. 2). Therefore, occlusions and
large discontinuities in both motion and depth must be dealt
with. The accuracy of our results is demonstrated in Fig. 3
by comparing them with the ground truth depth and 3D
motion. The results are quantitatively evaluated by com-
puting the NRMSP, NRMSV errors and the AAEV (defined
in Sec. 3). Table 2 summarizes the computed errors over
three domains: all pixels, non-occluded regions, only con-
tinuous regions (namely, removing regions corresponding
to discontinuities of the surface). An analysis of our results
clearly shows that oversmoothing in the discontinuous areas
accounts for most of the errors.

NRMSP(%) NRMSV(%) AAEV (deg)
w/o Discontinuities 0.65 2.94 1.32

w/o Occlusions 1.99 5.63 2.09
All pixels 4.39 9.71 3.39

Table 2. The evaluated errors of our computed scene flow and
structure over three domains: the continuous regions, the non-
occluded regions and over all pixels.

Real data: In this set of experiments we used real-world
sequences of a moving scene. These sequences were cap-
tured by three USB cameras (IDS uEye UI-1545LE-C). The
cameras were calibrated using the MATLAB Calibration
Toolbox. The location of the cameras was fixed for all
datasets. All test sequences were taken with an image size
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a b c

d

e

f g
Figure 4. Cars dataset: (a), the reference view at time t; (b), the
depth map masked with the computed occlusion maps; (c), the
magnitude of the computed scene flow (mm); (d), zoom in at time
t; (e), the corresponding warped image; and (f), zoom in at time
t + 1; (g), the projection of the computed scene flow; Occluded
pixels are colored in red.

of 1280 X 1024 and then were downsampled by half. In
all datasets, the depth was initialized to two planes that are
parallel to the reference view, located in Z = 2 · 103mm
and 103mm. We next discuss our results on three datasets.

The first dataset (Fig. 4) involves the rigid 3D motion of
a small object (car), in a static scene. The second dataset
(Fig. 5) exemplifies a larger motion, mostly in depth direc-
tion. The object is low in texture and is moving piecewise
rigidly (due to the rotation of the back part of the object).
The third experiment consists of a rotating face (Fig. 6). In
that case, the 3D motion is generally different for each 3D
point. In addition the hair involves non-rigid motion. In all
three datasets, large occlusions exist due to the noticeable
dissimilarity between the frames.

We show our results in Fig. 4- 6. For each dataset we
present: the magnitude of the estimated scene-flow and the
resulting projection of our scene flow onto the reference
view . The motion of pixels that are occluded in at least
one of the images is colored in red. Note that most of the
errors are found in the computed occluded regions and in
the depth discontinuities. In addition, we present the esti-
mated depth masked with the occlusion maps. In order to
visually validate our results, we present images warped to
the reference view. As can be seen in all the experiments,
our method successfully recover the scene flow and depth.
It can be observed that the warped images are very similar
to the reference view.

5. Conclusions

In this paper, we proposed a variational approach for si-
multaneously estimating the scene flow and structure from
multi-view sequences. The novel 3D point cloud represen-
tation, used to directly model the desired 3D unknowns,
allows smoothness assumptions to be imposed directly on
the scene flow and structure. In addition, the desired syn-
ergy between the 3D unknowns is obtained by imposing
the spatio-temporal brightness constancy assumption. Our
energy functional explicitly expresses the smoothness and
BC assumptions while enforcing geometric consistency be-
tween the views. The redundant information from multiple
views adds supplementary constraints that reduce ambigui-
ties and improve stability.

The combination of our 3D representation in this multi-
view variational framework results in a challenging non-
convex optimization problem. Moreover, due to our 3D
representation, the relation between the image coordinates
and the unknowns is non-linear (as opposed to optical flow
or disparity). Consequently, the derivation of the associ-
ated Euler-Lagrange equations involves non-trivial compu-
tations. In addition, the use of multiple views requires to
properly handle occlusions since each view adds more oc-
cluded regions. Obviously, the occlusion between the views
becomes more sever when a wide baseline rig is considered.
Our variational framework, which is used for the first time

a b c

d e

f g h

Figure 5. Cat dataset: (a,d), the reference view at time t and
t + 1, respectively; (e), the right view at time t; (b,c), warped
images from d→ a and e→ a, respectively; The yellow regions
are the computed occlusions; (f), the magnitude of the resulting
scene flow (mm); (g), the depth map masked with the computed
occlusion maps; and (h), the projection of the computed scene
flow. Occluded pixels are colored in red.
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a b c d e

f g h i j k
Figure 6. Maria dataset: (a-c), the three views at time t, where (c) is the reference; (f-h), the corresponding views at time t + 1; (d),
warped image from h→ c; (e), warped image from f→c, where the yellow regions are the computed occlusions; (i), the magnitude of the
resulting scene flow (mm); (j), the depth map masked by the computed occlusion maps; and (k), the projection of the computed scene flow.
Occluded pixels are colored in red.

for multiple views and 3D representation, successfully min-
imizes the resulting functional despite these difficulties.

Our accurate and dense results on real and synthetic
data demonstrate the validity of the developed method.
Most of the errors in our results are found in the depth
discontinuities and in the occluded regions. These errors
are expected to increase when the setup consists of even
larger differences in the fields of view of the camera than
those considered in our experiments. It is, therefore,
worthwhile to further study a method that will better cope
with such regions.

Acknowledgements
The authors are grateful to the A.M.N. foundation for its
generous financial support.

References
[1] T. Basha, Y. Moses, and K. N. Multi-View Scene Flow Es-

timation: A View Centered Variational Approach, TR, 2010.
ftp://ftp.idc.ac.il/yael/papers/TR-BMK-2010.pdf.

[2] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High ac-
curacy optical flow estimation based on a theory for warping.
In ECCV, volume 3024, pages 25–36, 2004.

[3] R. Carceroni and K. Kutulakos. Multi-view scene capture by
surfel sampling: From video streams to non-rigid 3D motion,
shape and reflectance. IJCV, 49(2):175–214, 2002.

[4] J. Courchay, J. Pons, R. Keriven, and P. Monasse. Dense and
accurate spatio-temporal multi-view stereovision. In ACCV,
2009.

[5] P. Felzenszwalb and D. Huttenlocher. Efficient belief propa-
gation for early vision. IJCV, 70(1):41–54, 2006.

[6] Y. Furukawa and J. Ponce. Dense 3D motion capture from
synchronized video streams. In CVPR, pages 1–8, 2008.

[7] F. Huguet and F. Devernay. A variational method for scene
flow estimation from stereo sequences. In ICCV, 2007.

[8] M. Isard and J. MacCormick. Dense motion and disparity es-
timation via loopy belief propagation. ACCV, 3852:32, 2006.

[9] R. Li and S. Sclaroff. Multi-scale 3D scene flow from binoc-
ular stereo sequences. CVIU, 110(1):75–90, 2008.

[10] D. Min and K. Sohn. Edge-preserving simultaneous joint
motion-disparity estimation. In ICPR, volume 2, 2006.

[11] J. Neumann and Y. Aloimonos. Spatio-temporal stereo using
multi-resolution subdivision surfaces. IJCV, 47(1):181–193,
2002.

[12] J. Pons, R. Keriven, and O. Faugeras. Multi-view stereo re-
construction and scene flow estimation with a global image-
based matching score. IJCV, 72(2):179–193, 2007.

[13] L. Robert and R. Deriche. Dense depth map reconstruction:
A minimization and regularization approach which preserves
discontinuities. ECCV, 1064:439–451, 1996.

[14] D. Scharstein and R. Szeliski. Middlebury stereo vision re-
search page. http://vision.middlebury.edu/stereo.

[15] D. Scharstein and R. Szeliski. A taxonomy and evaluation of
dense two-frame stereo correspondence algorithms. IJCV,
47(1):7–42, 2002.

[16] D. Scharstein and R. Szeliski. High-accuracy stereo depth
maps using structured light. In CVPR, volume 1, 2003.

[17] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade.
Three-dimensional scene flow. In ICCV, pages 722–729,
1999.

[18] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade.
Three-dimensional scene flow. PAMI, pages 475–480, 2005.

[19] S. Vedula, S. Baker, S. Seitz, and T. Kanade. Shape and
motion carving in 6D. In CVPR, volume 2, 2000.

[20] A. Wedel, C. Rabe, T. Vaudrey, T. Brox, U. Franke, and
D. Cremers. Efficient dense scene flow from sparse or dense
stereo data. In ECCV, 2008.

[21] O. Woodford, P. Torr, I. Reid, and A. Fitzgibbon. Global
stereo reconstruction under second order smoothness priors.
PAMI, 31(12):2115, 2009.

[22] Y. Zhang and C. Kambhamettu. Integrated 3D scene flow
and structure recovery from multiviewimage sequences. In
CVPR, volume 2, 2000.

[23] Y. Zhang and R. Kambhamettu. On 3d scene flow and struc-
ture estimation. In CVPR, pages 778–785, 2001.

8


